Neural Network Analysis of Dimuon Data within CMS

Shannon Massey University of Notre Dame

Overview

- The CMS Detector
- Muons and Event Display
- Classification and Machine Learning
- Signal and Background Discrimination in Dimuon Final State
- Summary
- Acknowledgements

The Compact Muon Solenoid (CMS) Detector

- General-purpose collider detector
- Modular design
- Four main parts
 - Tracker, Electromagnetic Calorimeter (ECAL), Hadron Calorimeter (HCAL), Muon System
- A large solenoid magnet
 - Operated a field of 3.8 Tesla
 - \sim 100,000 times the magnetic field of the Earth

Compact Muon Solenoid (CMS)

Muons

- CMS identifies and measures muons using silicon tracker and the outer muon system
- Produced in the decay of Standard Model and potential new particles
 - Example: $Z \rightarrow \mu\mu$, $H \rightarrow ZZ \rightarrow 4\mu$, $Z' \rightarrow \mu\mu$
- Charge: $\pm 1 e$
- Mass of $\sim 105.7 \text{ MeV}/c^2$
 - Mass of an electron = $\sim .51 \text{ MeV}/c^2$
- Half-Life of 2.2 μs
- Good to study since it can be identified easily and measure well
 - Also, smaller backgrounds in high p_T muon final states

Fireworks

- Event display through Fireworks (cmsShow)
- Ability to visualize reconstructed data

Binary Classification with Neural Networks

- Discrimination between signal and background events/objects
- Essential to find interesting and rare signal events within gigantic data sets
 - Analogous to finding a needle in a haystack
- Machine Learning algorithms can be used to classify data

Machine Learning

- Supervised Learning
 - Trained through numerous labelled examples
 - Examples: Siri, Image Recognition, Text Recognition (Spam), many others
- Unsupervised Learning
 - No labels are given to the learning algorithm in the examples
 - Must find structure in the inputs on its own
 - Used to: recognize patterns within data, categorize data

Toolkit for Multivariate Analysis (TMVA)

- Integrated into ROOT
- Includes many different multivariate classification algorithms
 - Fisher discriminants (linear discriminant analysis)
 - K-Nearest Neighbor
 - Boosted Decision and Regression Trees
 - Artificial Neural Networks (ANN)
- All algorithms are supervised learning
- My work focused on ANNs
 - More specifically Multilayer Perceptrons (MLPs)

Multilayer Perceptrons

- Network of "hidden", simple neurons (perceptrons)
- Linked by feed-forward connections
- In order to learn from a set of inputs, TMVA MLPs use backpropagation (of errors)
 - To change the weights, we must Background compute the partial derivative of the weights (gradient descent method)
 - The derivatives give us the direction (+/-) the weights must change to reduce error
 - Goal: minimize miscalculation error

Multilayer Perceptrons

- In TMVA, activation functions for MLPs:
 - Linear: \mathcal{X}
 - Sigmoid: 1/1+e1-x
 - Tanh: $e^{1/2}x 1/2$ $e^{1/2}x + 1$
- Sigmoid popular for binary classification

Toy Data within TMVA

- TMVA provides an example with a toy data set
 - Signal and Background for var 1, var 2, var 3, var 4

MLP Output from Toy Data

MLP Attributes

- Sigmoid activation function
- 600 training cycles
- 8 different MLPs
 - 1 and 2 Hidden Layers
 - 4, 9, 14, 19 Nodes
- Difficult to
 determine
 effectiveness of the
 algorithms by eye

MLP Analysis of Toy Data

- Receiver Operating Characteristic Curve (ROC Curve) useful in determining effectiveness of an algorithm
- Plots background at each x-value/total background vs. signal at each x-value/total signal
 - AUC of a perfect algorithm = 1
 - AUC of a completely random = .5

Toy Data: Area Under the Curve Table						
Nodes in	Nodes in	Area Under the ROC				
Layer One:	Layer Two:	Curve (AUC)				
4		0.9189				
9		0.9194				
14		0.9192				
19		0.9195				
4	4	0.9202				
9	9	0.9190				
14	14	0.9195				
19	19	0.9200				
	Nodes in Layer One: 4 9 14 19 4 9	Nodes in Layer One: Layer Two: 4 9 14 19 4 9 9 14 19 4 19 14 19 14				

Event Reconstruction

- Many Thanks to Grace for dimuon samples!
- Applied a Python script with C++ analyzer to .root generation file
 - Select desired events (Muons)
 - Include necessary attributes (p_t, eta, phi)

Classification with Dimuons (Case 1)

- MLP implementation to discriminate Dimuons in Mass Peak and side-bands
 - Signal input: Kinematic Variables Dimuon Mass Peak
 - 80 GeV 100 GeV (1,758 Events within the range)
 - Background input: surrounding Drell-Yan background
 - Mass: 60 GeV 80GeV (1,867 Events within the range)

Classification of Dimuon Mass Peak

- Signal and Background inputs
- Four Variables included in the calculation of the dimuon mass
 - High Transverse Momentum (pt), Low pt, Delta Eta, Delta Phi

Naturally not as separated as the toy data input variables

Classification (Case 1)

- MLP Attributes
 - Sigmoid activation function
 - 5,000 training cycles
 - 2 MLPs
 - 1 and 2 Hidden Layers
 - 4 Nodes

Classification (Case 2)

- Signal and Background
 - Signal input: Kinematic Variables in Dimuon Mass Peak
 - 80-100 GeV (1,758 events)
 - Background input: Surrounding Drell-Yan Mass Peak
 - 100-120 GeV (1,275 events)

Classification (Case 2)

- MLP Attributes
 - Sigmoid activation function
 - 5,000 training cycles
 - 2 MLPs
 - 1 and 2 Hidden Layers
 - 4 Nodes

Classification (Case 3)

- Signal and Background
 - Signal input: Dimuon Mass Peak
 - 80-100 GeV (1,758 events)
 - Background input: Surrounding Drell-Yan Mass Peak
 - 60-80 GeV (1,867 events) and 100-120 GeV (1,275 events)

Classification (Case 3)

- MLP Attributes
 - Sigmoid activation function
 - 5,000 training cycles
 - 2 MLPs
 - 1 and 2 Hidden Layers
 - 4 Nodes

MLP Analysis of Dimuon Mass

Dimuon Mass MLP Attributes Table (Case 1)					
Hidden	Nodes in Layer	Nodes in Layer			
Layers:	One:	Two:	AUC		
One	Four	N/A	0.8607		
Two	Four	Four	0.9577		

Dimuon Mass MLP Attributes Table (Case 2)					
Hidden	Nodes in Layer	Nodes in Layer			
Layers:	One:	Two:	AUC		
One	Four	N/A	0.809		
Two	Four	Four	0.797		

Dimuon Mass MLP Attributes Table (Case 3)					
Hidden	Nodes in Layer	Nodes in Layer			
Layers:	One:	Two:	AUC		
One	Four	N/A	0.595		
Two	Four	Four	0.543		

Summary

- Neural Networks can be used to separate signal and background events in collisions at CMS
- We used TMVA to apply neural networks in dimuon final state events
 - Applied to $Z \rightarrow \mu\mu$ and Drell-Yan
- Deeper MLPs do not increase separation much in these examples

Acknowledgements

- Advisors: Dr. Pushpa Bhat and Dr. Leonard Spiegel
- Co-workers: Graham Stoddard (Northern Illinois University) and Grace Cummings (Virginia Commonwealth University)
- Mentor: Dr. Elliot McCrory
- Staff: Sandra Charles and the SIST Committee

Simple Example

- A neuron can be thought of as a real-valued circuit
- Goal: slightly tweak input to increase the output
- Find $\partial F/\partial X$ and $\partial F/\partial y$
- Change each by a small step size
 - $X' = X + \text{step } * \partial F/\partial x$
 - $Y' = Y + step * \partial F/\partial Y$

Advances in Neural Networks; Deep Learning

- Deep Neural Networks
 - Very difficult to train in the past due to many layers
 - Recent advances in many research labs have made it easier to train
 - Relatively new Python modules such as Theano and PyLearn2 provide necessary framework for new DN studies
- Deep Belief Networks
 - Greedy layer-wise unsupervised learning
- Self-Organizing Maps
- Check out LISA Lab at University of Montreal for interesting work regard Deep Learning